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1 Review

1.1 What is Optimization?

Optimization is a special field that is built on the three intertwined pillars (footsones):

e Model: gives rise to optimization problems.
e Algorithm: solves optimization problems.

e Theory: supports algorithms and models.

We need to remember that

Optimization = Modeling + Algorithm + Theory.

1.2 General Form of Optimization

Definition 1 (General Form of Optimization Modeling)
Suppose that f: X CR™ — R is a well-defined function. Then
min f(x),

s.t.x e X,

where f is called as an objective function, x = (x1,2a,...,7,) € X is a decision variable, and X is the
so-called feasible set. For the feasible set X, it is commonly denoted as

X={x:¢(x)<0,i=1,....l and ¢;(x) =0,7=1+1,...,l+m},

where ¢;(x) < 0,i =1,...,1 are | inequality constrains, and c;(x) = 0,7 =1+ 1,...,l+m are m equality

constrains.

Definition 2 (Global Minimum)

Point x* € X is the global minimum of (1) if for any x € X, f(x) > f(x*) = f*.

Definition 3 (Local Minimum,)

Point x* € X is a local minimum of (1) if there exists a neighborhood of x*, N(x*,€) = {x: ||x — x*|| < €},

such that for any x € N(x*,¢€), f(x) > f(x*).

For an optimization problem, we may have many local minimum points and global minimum

points. Draw an example by yourself!

Q: Give us an optimization example you have learnt with the general optimization formulation in Definition

1.




1.3 Modeling in Optimization

Example 1 (Transportation Problem in the Operational Management)

Figure 1: An example of Transportation Problem

Transportation problem (see Figure 1) is a typical problem of operational management where the objective is
to minimize the cost of distributing a product form a number of sources or origins to a number of destinations.

Modeling:

e Origin: O1,04,...,0,,, and each origin O;,i = 1,...,m has a supply of a; units.

o Destination: D1, D, ..., Dy, and each D; has a demand for bj,j =1,...,n to be delivered from the
origins.

o ;5 is the cost per unit distributed from the origin O; to the destination D;.
o Aim: Finding a set of z;;’s i =1,...,m;j =1,...,n to meet supply and demand requirements at a

minimum distribution cost.

Optimization Formulation:

min iixljcij’ (3)

i=1 j=1
st.oxy; >0,i=1,....m5j=1,...,n, (4)

Zwij = Gy, (5)
j=1

> @i =10y, (6)
i=1
where (4) are the inequality constrains and (5) and (6) are the equality constrains.

Q: Is this the general form of optimization (1)?
Q: Why called it as a Linear Program?

From the managerial perspective, optimization is also a general quantitive decision-making problem which
focus on how to distribute and control the limited resource for achieving the optimal value.



Example 2 (Portfolio Management)

Portfolio Management (see Figure 2) is the art and science of making decisions about investment miz
policy, matching investments to objectives and balancing risk against performance.
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Figure 2: An example of Portfolio Management

Modeling:

e n assets or stocks that are hold over a period of time.
o x; denotes the amount of asset i, the final period.
e original price p;o for asset i, the final price p;; at time t, then the return on asset i is r;

Dpio

e the overall return is R = Z?Zl ;.

and

— Pit—Pio

o Suppose thatr = (r1,...,7,) " is a random vector with expectation of u = (p1, ..., in) ", and covariance
of X.
o Aim: Finding a set of asset x = (x1,...,2,)" to mazimize the expected overall return and balancing

the risk perform.

Optimization Formulation:

max E(R) — AVar(R),

X

st.x; >0,0=1...,n,

n
E Ty = 1,
i=1

where E(R) is the expectation of R, Var(R) is the variance of R and X > 0 is called risk aversion parameter

for balancing the investment risk and expected return. Finally, we have that

max p' X — Ax' ¥x,
X

s.t.x; > 0,0 =1...,n,

n
E T; = ].,
i=1



Q: How to compute E(R) and Var(R)?
Q: Why not z; < 07

Remark 1 This example is significantly important. Because

e This is called a nonlinear program due to the nonlinear objective function.

e It is also called aquadratic program. Why???

e Harry Markowiz proposed this model called Modern Portfolio Theory or Mean-Variance Anal-
ysis and obtain the Nobel Prize in 1990.

Example 3 Generalized Linear Model (GLM). Let us consider the following three management problems.

o b= House Price = F(a; = number of rooms,as = school distriction, as,...)

o b= Credit Rate = F(ay = education, ag = salary, as, .. .)

o b= Number of Visit this month = F (a1 = number of visit last month,as = RFM, a3, ...)
In this example, we introduced three classic regression models, linear regression(house price), Poisson regres-
sion (number of visit this month) and logistic regression (credit rate) derived from GLM. We parameterized the

parameters in the statistic models as a linear function of covariant variables a, and formed the optimization
problem from the likelihood.

Consider the input-output pairs {a;,b;}*, as the data. The procedure can be summarized as following recipe,

1. write down a probabilistic model for b;

2. link model parameter x with a;

3. formed the optimization problem wusing maximum likelthood that aim to discover x with all data
{ai, bi}i2y

Next we instantiate this recipe by three examples.

(i) Linear Regression: Given training data {a;,b;}", with a; € RP and b; € R. Suppose each b; i

N(pi,02), that is

1 bi — pi)?
P(bi|/’[’ia02) = \/%0_ eXp{—( 202 ) }

b7 $H7 = bigui

1
= ﬁ eXP{*@}eXP{*T}-

It is convention to choose the parameters that multiply b; as the linear function of the variables a; with
the parametric coefficient x. Here we make the assumption that

0; = pi = (a;,x).

We wish to examine how we find a good x to make this work. Our strategy for this is to maximize the
likelihood of all observations {b;} as a function of x, i.e.

11 1
max Hexp{fﬁ(iuf — b))} = max logHexp{f@«ahﬂz —bi(a;,x))}.



To mazimize this expression, we take the negative log of the expression, i.e. we want to minimize

min % z:(}(ai,@2 —bi{a;, x)).

x g2
i=1
To write it more compactly, we denote,
alT bl
A=]: ], b=
al b,

And we have,

Z<ai7m>2 = ||AX||27 Zbi<ai7x> = (b, Ax),
i=1

=1

we get the minimization problem
o1 2 1 2
argmin —| Ax||* — (b, Ax) = argmin —|Ax — b||
z 2 z 2

which is a linear least-squares regression problem.
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